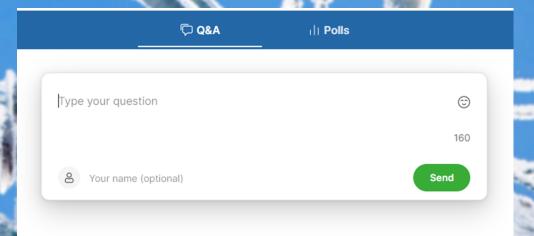


Texas RE Winter Weatherization Workshop



AGENDA

- Kick-off and Instructions
- Executive Welcome
- Standards Update
- Compliance Approaches & Findings Panel
- Cold Weather Implementation
- Gas-Electric Coordination Panel
- 2025-26 Winter Weather Forecast and Historical Extremes Review

October 1, 2025

To submit questions during the workshop, please visit **slido.com** and enter today's participant code: **TXRE**

Welcome & Instructions

Matthew Barbour

Texas RE

Communications & Training Manager

Antitrust Admonition

Because this event brings together market participants who may be viewed as actual or potential competitors, we must be mindful to conduct it in a manner that is consistent with the antitrust and competition laws. Participants should not disclose non-public, proprietary, or competitively sensitive information.

Attendees should exercise independent judgment and avoid even the appearance of discussions of agreements or concerted actions that may be viewed as restraining competition. Any questions on Texas RE's Antitrust Compliance Corporate Policy may be directed to Texas RE's General Counsel.

Questions

To submit questions during the workshop, please visit **slido.com** and enter today's participant code: **TXRE**


_	© Q&A	ılı Polis	
Type your question	on		©
			160
8 Your name (o	ptional)		Send

Training Page

Texas RE offers training on a very ty of compliance- and standards-related topics. Workshops and seminars are a counced to subscribers of the Texas RE Information mailing list. To subscribe to our mailing list please visit Texas RE Mailing Lists.

For questions about training, pages e contact Texas RE Information.

Workshops 🗸

Talk with Texas RE 🗸

Align Training V

Lessons Learned V

Archived Presentations v

<u>Workshops</u>

HOME | ABOUT US | CAREERS

Women's Leadership in Grid Reliability and Security Conference | Recording

Understanding New Generator Obligations | Recording

Fall Standards, Security, and Reliability Workshop

2024 Fall Standards, Security, and Reliability Workshop | Recording

Spring Standards, Security, and Reliability Workshop

2025 Spring Standards, Security, and Reliability Workshop | Recording

Cyber and Physical Security Workshop

2024 Cyber and Physical Security Workshop | Keynote | Panels: Critical Infrastructure, Threat Assessment, Grid Technologies, Security Posture

Evolving Grid Workshop

2025 Evolving Grid Workshop | Keynote: Jim Robb | Keynote: Michael Webber Panels: Large Loads, Integrating Emerging Technologies, Expanding Security Challenges, Transmission Planning

Winter Weatherization Workshop

Winter Weatherization Workshop

Reliability 101 & 201

Upcoming Texas RE Events

Social Media

@Texas_RE_Inc

/TexasReliabilityEntity

Executive Welcome

Joseph Younger

Texas RE

Vice President & Chief Operating Officer

FERC and NERC Weatherization **Updates Rachel Coyne Executive Chief of Staff**

Agenda

History and Timeline

EOP-011-4 and Implementation Dates

EOP-012-2 and Implementation Dates

EOP-012-3 and Implementation Dates

Transmission System Planning Performance Requirements for Extreme Weather

Events

2011 Southwest Cold Weather Event

- Generators were not winterized
- 2012—NERC submitted SAR to create mandatory winterization standard
- Operating Committee created a Reliability Guideline: Generating Unit Readiness
- Standards Committee rejected the SAR

2014 Polar Vortex

Unplanned generation outages and derates

2018 South Central U.S. Cold Weather Event

• Failure to properly prepare or winterize the generation facilities for cold temperatures

2021 Winter Storm Uri

• Failure to properly prepare or winterize the generation facilities for cold temperatures

2022 Winter Storm Elliott

• Largest controlled firm shed in the Eastern Interconnection

2024 Winter Storm Heather

• Challenges highlighted need to implement recommendations from Uri and Elliott

Timeline

Time

- February 2021: Winter Storm Uri
- August 24, 2021: Order approving EOP-011-2, IRO-010-4, and TOP-003-5
- November 2021: Joint Inquiry on February 2021 Cold Weather Outages in Texas and South Central U.S.
- February 16, 2023: Order Approving EOP-011-3 and EOP-012-1
- > June 27, 2024: Order Approving EOP-011-4 and EOP-012-2
- > October 1, 2024: Effective Date EOP-011-4 and EOP-012-2
- > September 18, 2025: FERC Order Approving EOP-012-3
- October 1, 2025: Effective Date of EOP-012-3

June 27, 2024, FERC Order

Approved EOP-012-2 and definitions, EOP-011-4 implementation plan

Five directives

- Revise definition of Generator Cold Weather Constraint and clarify requirements for declared constraints
- Periodic review of Generator Cold Weather Constraint declarations
- Revisions to Corrective Action Plan (CAP) implementation timelines
- NERC to receive and review validity of Generator Cold Weather Constraints
- Extensions of Corrective Action Plans are pre-approved and operating limitations communicated

NERC Reliability Standard EOP-011-4

Title:

Emergency Operations

Purpose:

To address the effects of operating Emergencies by ensuring each Transmission Operator and Balancing Authority has developed plan(s) to mitigate operating Emergencies and that those plans are implemented and coordinated within the Reliability Coordinator Area as specified within the requirements.

Applicability:

Balancing Authority

Reliability Coordination

Transmission Operator

Distribution Provide (see specific criteria)

UFLS-Only Distribution Provider (see specific criteria)

Transmission Owner (see specific criteria)

EOP-011-4 Implementation Dates

Effective Date:	1st day of first calendar quarter six months following regulatory approval		10/1/2024	
Requirement		Implementation Plan	Compliance Date	Notes
Part 1.2.5	Compliant by	30 months after the Effective Date	10/1/2024	Manual load shed - 10/1/2024 effective date UVLS and UFLS - 4/1/2027 effective date
Part 1.2.5.1	Compliant by	Effective Date	10/1/2024	
Part 1.2.5.2	Compliant by	Effective Date	10/1/2024	Manual load shed - 10/1/2024 effective date UVLS and UFLS - 4/1/2027 effective date
Part 1.2.5.3	Compliant by	Effective Date	10/1/2024	
Part 1.2.5.4	Compliant by	Effective Date	10/1/2024	
Part 1.2.5.5	Compliant by	30 months after the Effective Date	4/1/2027	
Part 2.2.8	Compliant by	30 months after the Effective Date	4/1/2027	
Part 2.2.9	Compliant by	30 months after the Effective Date	10/1/2024	Manual load shed - 10/1/2024 effective date UVLS and UFLS - 4/1/2027 effective date
R8	Compliant by	30 months after the Effective Date	4/1/2027	

NERC Reliability Standard EOP-012-2

Title:

Extreme Cold Weather Preparedness and Operations

Purpose:

To address the effects of operating in extreme cold weather by ensuring each Generator Owner has developed and implemented plan(s) to mitigate the reliability impacts of extreme cold weather on its applicable generating units

Applicability:

Generator Owner

Generator Operator

Certain Facilities (see specific criteria)

Definitions:

Generator Cold Weather Critical Component

Fixed Fuel Supply Component

Generator Cold Weather Reliability Event

Generator Cold Weather
Constraint

Extreme Cold Weather Temperature

EOP-012-2 Implementation Plan Dates

Effective Date of EOP-012-2	The first day of the first calendar quarter that is three months after the effective date of the applicable governmental authority's order approving the Standard	10/1/2024
Requirement	Implementation Plan	Compliance Date
		10/1/2024 (initial
R1	EOP-012-2 Effective Date	performance)
R2	EOP-012-2 Effective Date	10/1/2024
	12 months after the effective date	
R3	of EOP-012-2	10/1/2025
R4	EOP-012-2 Effective Date	10/1/2024
R5	EOP-012-2 Effective Date	10/1/2024
R6	EOP-012-2 Effective Date	10/1/2024
R7	EOP-012-2 Effective Date	10/1/2024
R8	EOP-012-2 Effective Date	10/1/2024

September 18, 2025, FERC Order Approving EOP-012-3

Approves
EOP-012-3, VRFs,
and VSLs

Generator Cold
Weather
Constraint
Declaration

R1 Abeyance Period

EOP-012-3

Improves Reliability

- Generator Cold Weather Constraint declarations submitted to its CEA for validation timely
- Generator Cold Weather Reliability Event CAPs are completed prior to the first day of the first December following the event and entities have a shorter timeframe (12 months) to review similar equipment with potential risk to identified freezing issues
- CAP extension approval process
- Discrete list of Generator Cold Weather Constraints (known and case-by-case) identified for generator owners along with a preapproval process for all declared constraints
- Shorter timeframe (36 months) required to review the validity of declared constraints and a process to implement freeze protection measures for declared constraints that are no longer valid

EOP-012-3 Implementation Plan

Effective Date of EOP-012-3	October 1, 2025, per FERC Order	10/1/2025
Requirement	Implementation Plan	Compliance Date
R1	Effective date of EOP-012-2 in accordance with that implementation plan.	10/1/2029
R2	For generating units for which the Generator Owner (GO) first contractually committed to design criteria relevant to this Requirement before June 29, 2023, and which enter commercial operation between October 1, 2027, and March 31, 2028, the GO shall comply with Requirement R2 relating to implementing required capability by no later than April 1, 2028.	4/1/2028
R2	If declaring a Generator Cold Weather Constraint.	Timeline in R8
R3	Entities beginning commercial operation after the effective date of EOP-012-3 shall become compliant with Requirement R3 no later than the commercial operations date for the applicable unit.	
R8	Entities shall review all Generator Cold Weather Constraints previously declared under Reliability Standard EOP-012-2 for compliance with Reliability Standard EOP-012-3 Attachment 1 by the effective date. Each entity shall submit any previously declared Generator Cold Weather Constraints to the Compliance Enforcement Authority (CEA) no later than 45 days following the effective date of Reliability Standard EOP-012-3. Newly declared Generator Cold Weather Constraints shall be submitted in accordance with the timelines specified in Requirement R8.	
R9	36 calendar months following validation by the CEA.	

FERC Directives

NERC to submit anonymized data on:

- Number of submitted Generator Cold Weather Constraint declarations
- Number of approved declarations
- Aggregate MVA of approved declarations
- Summary of rationale for approved declarations

FERC Directives

NERC to submit narrative analysis on the following:

- Whether Reliability Coordinators (RCs), Transmission Operators (TOPs), and Balancing Authorities (Bas) are timely notified of Generator Cold Weather Constraint declarations and corrective action plan extensions
- Reliability impacts, if any, of allowing generators 36 months to correct known freeze related issues
- Whether Generator Cold Weather Constraint declaration approval process is consistently interpreted and applied by the CEAs in a timely manner, whether the declaration criteria in Attachment 1 is adequately defined and clear, and the reliability impact on the Bulk Power System (BPS) due to declarations from each criterion in Attachment 1 and from approved CAP extensions

Filings should start no later than October 2026 and end October 2034

NERC Extreme Cold Weather Temperature Reporting

February 2023—Order directing NERC to develop a plan to collect data on winterization of generating units and to submit an annual informational filing on the analysis of the data

February 2024—NERC filed it's work plan, focused on data collected through Rules of Procedure Section 1600 cold weather generator data request

- Any NERC-registered GO must report by May 15 of each year
- Report details on operating temperatures, constraints, and CAPs to address operational issues during cold weather

Cold Weather Generator Data Request page on NERC's website

Transmission System Planning Performance Requirements for Extreme Weather

Transmission System Planning Performance Requirements for Extreme Weather

FERC Issued Order No. 896 on June 15, 2023

- Around 30 directives
- Regulatory deadline: December 15, 2024

June 15, 2023: FERC Issued Order No. 896 (with directives)

February 20, 2025: FERC Approved TPL-008-1

April 1, 2026: Effective Date of TPL-008-1

TPL-008-1: Transmission System Planning Performance Requirements for Extreme Temperature Events

TPL-008-1 Requirements

- (1) Development of benchmark planning cases based on major prior extreme heat and cold weather events and/or meteorological projections
- (2) Planning for extreme heat and cold weather events using steady state and transient stability analysis expanded to cover a range of extreme weather scenarios
- (3) Development of Corrective Action Plans that mitigate any instances where performance requirements for extreme heat and cold weather events are not met

TPL-008-1 Implementation Plan

Effective Date		First day of first calendar quarter 12 months after the effective date	4/1/2026
Requirement		Implementation Plan	Compliance Date
R1	Compliant by	upon effective date	4/1/2026
R2	Compliant by	24 months after effective date	4/1/2028
R3	Compliant by	24 months after effective date	4/1/2028
R4	Compliant by	24 months after effective date	4/1/2028
R5	Compliant by	24 months after effective date	4/1/2028
R6	Compliant by	24 months after effective date	4/1/2028
R7	Compliant by	48 months after effective date	4/1/2030
R8	Compliant by	48 months after effective date	4/1/2030
R9	Compliant by	48 months after effective date	4/1/2030
R10	Compliant by	48 months after effective date	4/1/2030
R11	Compliant by	48 months after effective date	4/1/2030

Extreme Temperature Assessment	Initial Performance	No later than 48 months after effective date	4/1/2030
	Subsequent Assessments	No later than 5 years following the previous assessment	

Ongoing Project 2023-07 Transmission System Planning Performance Requirements for Extreme Weather

Purpose of SAR: Address the transmission planning reliability gaps that do not expressly require Transmission Planners and Planning Coordinators to consider

- (1) Normal and extreme weather
- (2) Gas-electric interdependencies
- (3) DER in their transmission planning assessments in the long-term planning horizon

SAR Public Comment Period: 6/13/2025 – 7/23/2025

Low Priority Project

Recap

EOP-011-4 was effective 10/1/2024

EOP-012-3 effective 10/1/2025,

replaces EOP-012-2

TPL-008-1 effective 4/1/2026

Additional Information

- October 23, 2025
 NSRF: EOP-012-3 by
 Texas RE
- November 13, 2025
 Talk with Texas RE:
 TPL-008-1 by drafting team member

Follow Standards Activities

- □ NERC Standards Balloting and Commenting Webpage
- **□**One-Stop-Shop
- Subscribe to NERC Standards Mailing List
 - NERC helpdesk: https://support.nerc.net/
 - Weekly Standards, Compliance, & Enforcement Bulletin
 - Industry Webinars
- □ Standards Committee nominations close on October 13, 2025, elections from October 22-31, 2025
- **NERC Standards Review Forum (NSRF)**

Resources

- February 2021 Cold Weather Outages Report
- June 27, 2024, FERC Order
- September 18, 2025, FERC Order
- NERC Reliability Standard EOP-012-3
- Cold Weather Generator Data Request
- FERC Order No. 896
- NERC Reliability Standard TPL-008-1
- Project 2023-07 Project Page

Compliance
Approaches &
Findings Panel

Blair Giffin

Texas RE

David Kezell

ERCOT

Therese Harris

PUCT

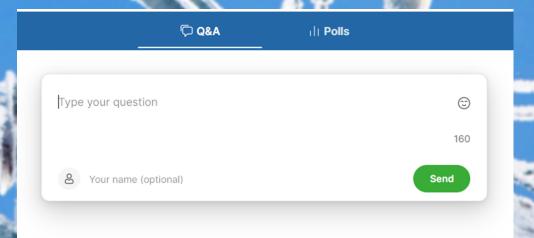
Kiel Lyons

NERC

Michael Kuhl

SERC

Texas RE Winter Weatherization Workshop



AGENDA

- Kick-off and Instructions
- Executive Welcome
- Standards Update
- Compliance Approaches & Findings
- Cold Weather Implementation
- Gas-Electric Coordination
- 2025-26 Winter Weather Forecast and Historical Extremes Review

To submit questions during the workshop, please visit **slido.com** and enter today's participant code: **TXRE**

Return: 11:00 a.m.

Cold Weather Implementation

A Transmission Perspective

Daniel Marr, VP, Transmission System Operations

LCRA Transmission Services Corporation

LCRA Provides Vital Services

WATER

862 river miles, chain of dams

GENERATION

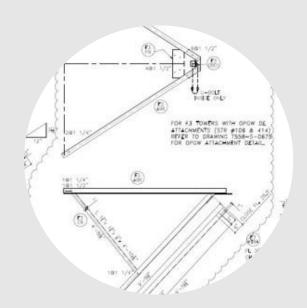
About 3,570 megawatts of power (own or have rights) for cities and cooperatives

TRANSMISSION

5,000+ circuit miles of line and other assets in about 80 counties

PARKS

40+ parks, community services


Lawton Lubbock Denton Shreveport Midland Odessa Waco Sai Angelo Bryan College Station Lake Ch The Woodlands Beaumont San Antonio Laredo Nuevo Laredo Monclova Reynosa

LCRA TSC's Transmission System

Winter Preparations – Timelines

Long-Term and Ongoing Efforts

ENGINEERING STANDARDS

Informed by industry and experience

PROACTIVE PROJECTS

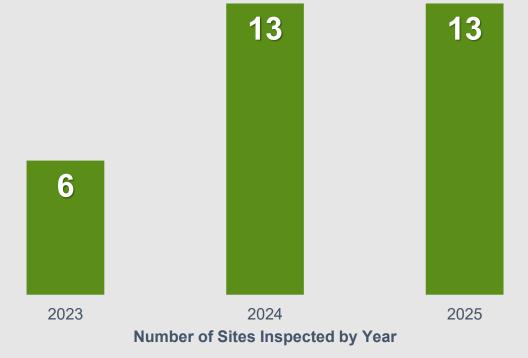
TL overhaul cycle storm hardening

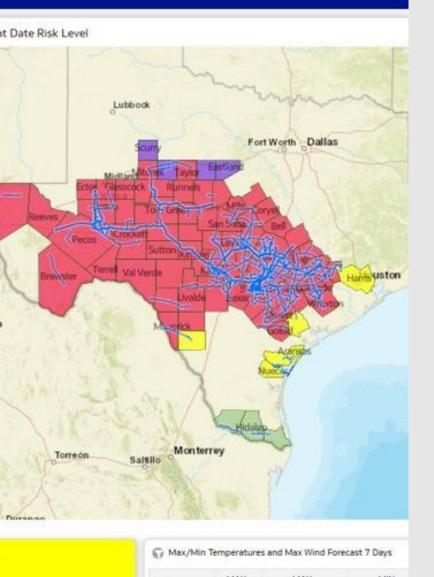
LINE & ROW MAINTENANCE

UAS-assisted patrols 1-2 years Vegetation 3 years

DRILLS, PLANS & EXERCISES

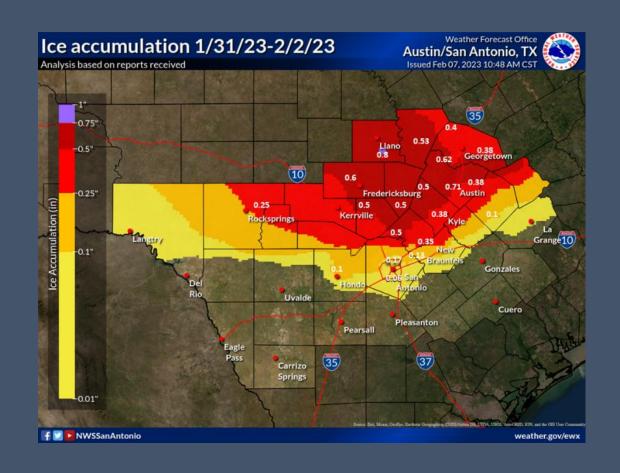
Annual enterprise-wide and team-specific


Seasonal Focus


- Monthly substation inspections with focus on cold weather critical components:
 - Compressed gas readings
 - Oil levels
 - Cabinet heaters
- Cold weather staff response equipment
 - Tire chains, block heaters, cold weather
 PPE
- Cold weather preparedness training

ERCOT Winter Weatherization Inspections

- On-site visits to LCRA TSC substations
- Inspection includes cold weather critical components
- Positive feedback:
 - Well-organized documentation
 - Knowledgeable staff
 - Equipment in good working order



Event Preparations

- LCRA TSC Incident Management Team
 - Departmental incident checklists
 - Meeting cadence
 - Management team structure/roles (NIMS)
 - Enterprise support
- Common operating picture
- Pre-stage equipment & personnel

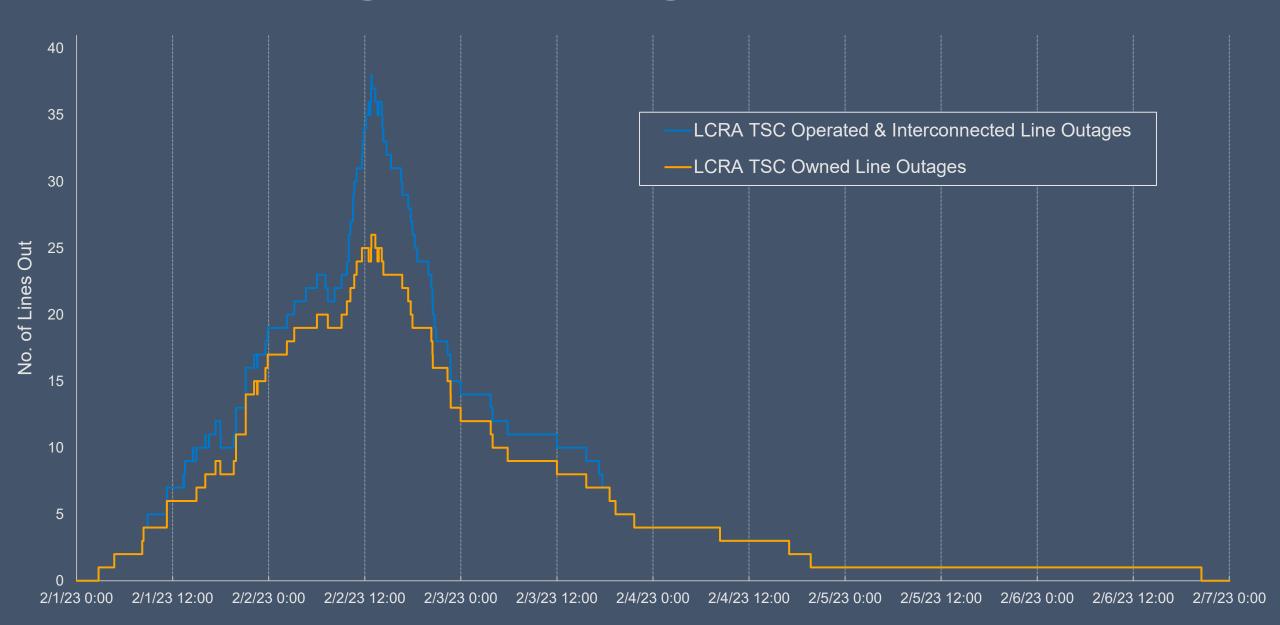
Winter Storm Mara

January 31, 2023 – February 2, 2023

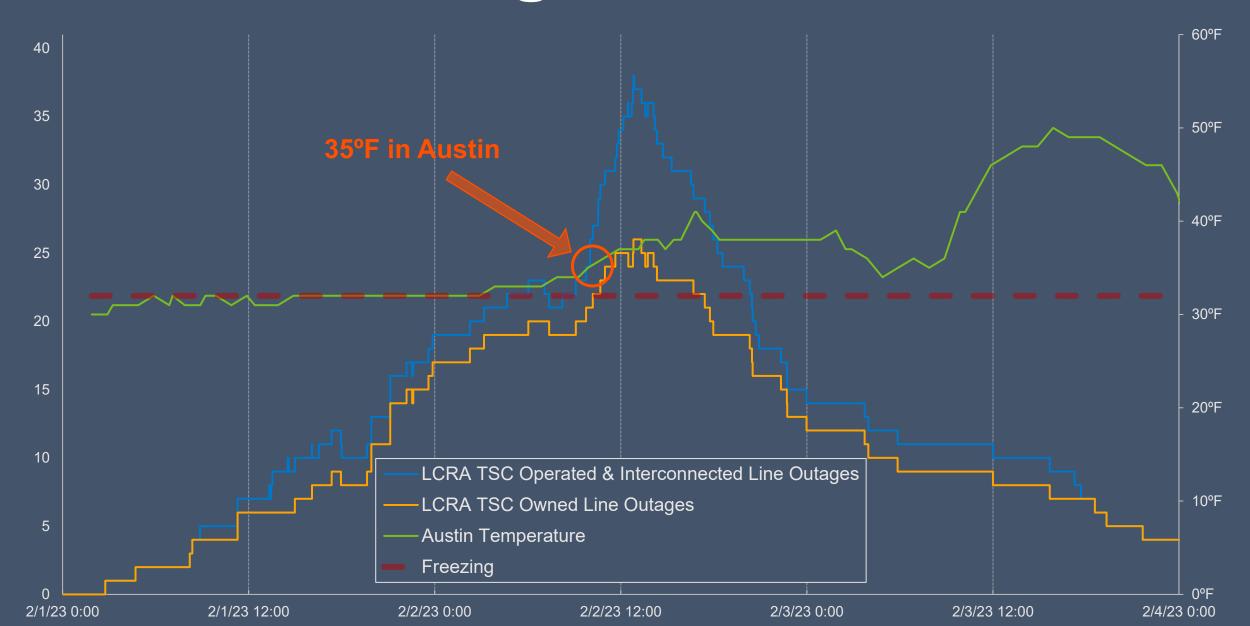
System Impacts

Highly Concentrated

1" Radial Ice Accumulation



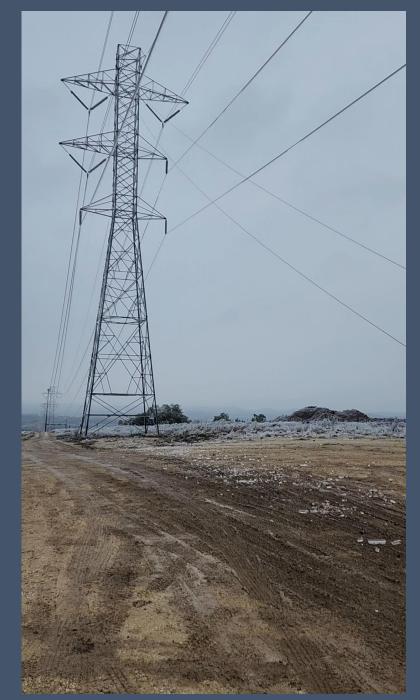
Challenging Conditions



Static Support Damage

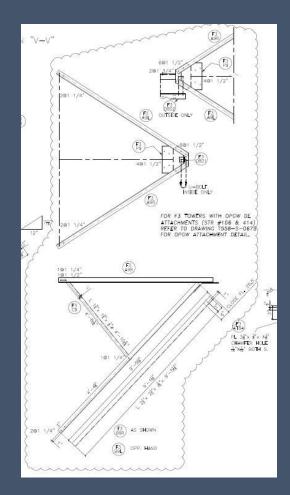
Line Outages During Mara

Increased Outage Rate



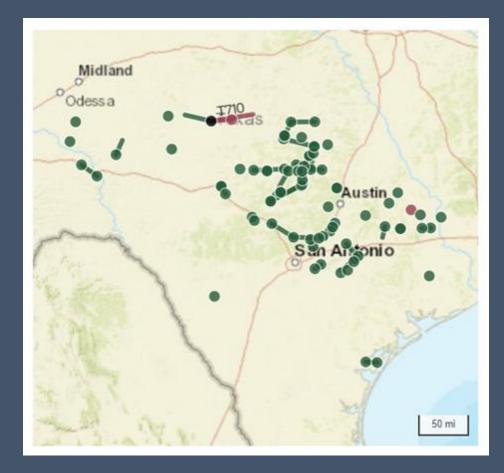
Ice Shedding

- Created sudden jump rope-like movement on static wires
- Led to tower failure or contact with conductor


Lessons Learned

Engineering Design Standards

- NESC Heavy (w/overload factors)
 - 0.846" ice
 - 54 mph wind



- ASCE 74 MRI
 - 1.125" ice
 - 40 mph wind
- Structure arm geometry key component of load studies
 - Tubular vs. Lattice tower arms
 - Strength capacity differences
- Leveraging additional design basis (ASCE) in concert with operational experience

Lessons Learned

- Outage management system maturation
- Central location to track and summarize LCRA TSC's assessment and response
- Geospatial outage display
- IMT roles created to monitor and validate data

Gas-Electric Coordination Panel

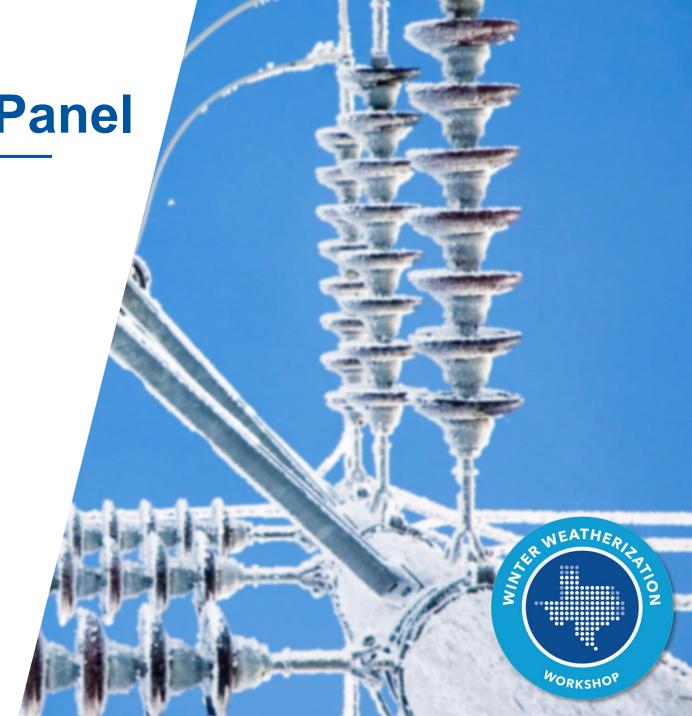
Evan Shuvo

Texas RE

Gilbert Herrera

RRC

Robert Clark


FERC

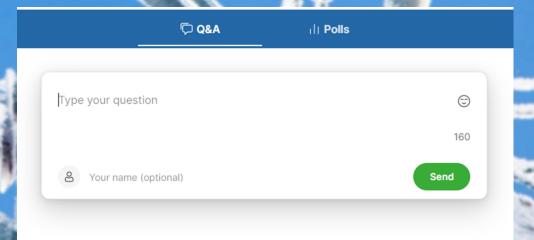
Tom Coleman

Argonne National Lab

Gerad Freeman

NERC

Texas RE Winter Weatherization Workshop



AGENDA

- Kick-off and Instructions
- Executive Welcome
- Standards Update
- Compliance Approaches & Findings
- Cold Weather Implementation
- Gas-Electric Coordination
- 2025-26 Winter Weather Forecast and Historical Extremes Review

To submit questions during the workshop, please visit **slido.com** and enter today's participant code: **TXRE**

Return: 12:45 p.m.

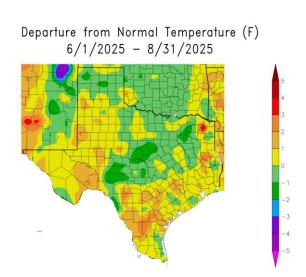
2025-26 Preliminary Winter Weather Outlook

Chris Coleman
ERCOT Supervisor of Operational Forecasting

Winter Weatherization Workshop October 1, 2025

Agenda

- Updating the summer
- Quick look at fall
- Review of last winter (and other recent winters)
- Expectations for the upcoming winter



Updating Summer 2025

Texas Average Temperature
June-August

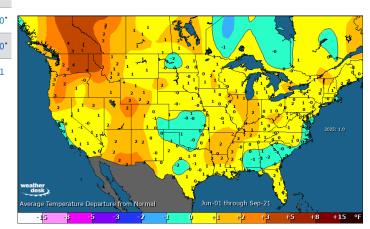
- June-August 2025 was the 33rd hottest on record for Texas (since 1895, based on mean temperatures). This (barely) ranks in the hottest quarter of all historical summers – but was significantly cooler than the previous three summers
- Jun-Aug 2025 ranked 9th hottest out of the past 15 years (since 2011)
- 2021 remains the mildest since 2007

June-August 2025 82.3°F 99 June-August 2024 84.0°F 126 June-August 2023 85.4°F 130 June-August 2022 84.8°F 129 June-August 2021 81.0°F 50 June-August 2020 83.4°F 122 June-August 2019 82.6°F 107 June-August 2018 83.8°F 70 June-August 2017 81.6°F 70 June-August 2015 81.9°F 84 June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120 June-August 2012 83.2°F 131	→ Period	Average Temperature	Rank ¢ (out of 131)
June-August 2023 85.4°F 130 June-August 2022 84.8°F 129 June-August 2021 81.0°F 50 June-August 2020 83.4°F 122 June-August 2019 82.6°F 107 June-August 2018 83.8°F 124 June-August 2017 81.6°F 70 June-August 2016 82.3°F 99 June-August 2015 81.9°F 84 June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2025	82.3°F	99
June-August 2022 84.8°F 129 June-August 2021 81.0°F 50 June-August 2020 83.4°F 122 June-August 2019 82.6°F 107 June-August 2018 83.8°F 124 June-August 2017 81.6°F 70 June-August 2016 82.3°F 99 June-August 2015 81.9°F 84 June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2024	84.0°F	126
June-August 2021 81.0°F 50 June-August 2020 83.4°F 122 June-August 2019 82.6°F 107 June-August 2018 83.8°F 124 June-August 2017 81.6°F 70 June-August 2016 82.3°F 99 June-August 2015 81.9°F 84 June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2023	85.4°F	130
June-August 2020 83.4°F 122 June-August 2019 82.6°F 107 June-August 2018 83.8°F 124 June-August 2017 81.6°F 70 June-August 2016 82.3°F 99 June-August 2015 81.9°F 84 June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2022	84.8°F	129
June-August 2019 82.6°F 107 June-August 2018 83.8°F 124 June-August 2017 81.6°F 70 June-August 2016 82.3°F 99 June-August 2015 81.9°F 84 June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2021	81.0°F	50
June-August 2018 83.8°F 124 June-August 2017 81.6°F 70 June-August 2016 82.3°F 99 June-August 2015 81.9°F 84 June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2020	83.4°F	122
June-August 2017 81.6°F 70 June-August 2016 82.3°F 99 June-August 2015 81.9°F 84 June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2019	82.6°F	107
June-August 2016 82.3°F 99 June-August 2015 81.9°F 84 June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2018	83.8°F	124
June-August 2015 81.9°F 84 June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2017	81.6°F	70
June-August 2014 81.6°F 70 June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2016	82.3°F	99
June-August 2013 82.1°F 90 June-August 2012 83.2°F 120	June-August 2015	81.9°F	84
June-August 2012 83.2°F 120	June-August 2014	81.6°F	70
	June-August 2013	82.1°F	90
June-August 2011 86.8°F 131	June-August 2012	83.2°F	120
	June-August 2011	86.8°F	131

100-degree days (through 9/26/25):

Dallas: 7 days. (2024: 23)

• Houston: 8 days. (2024: 9)


• Austin: 22 days. (2024: 32)

• San Antonio: 20 days. (2024: 25)

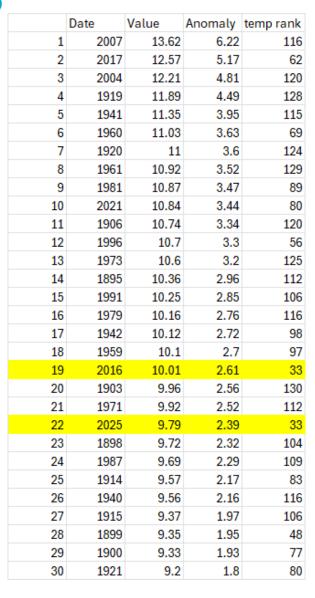
• Midland: 29 days (2024: 31)

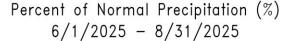
• McAllen: **55** days (2024: 54)

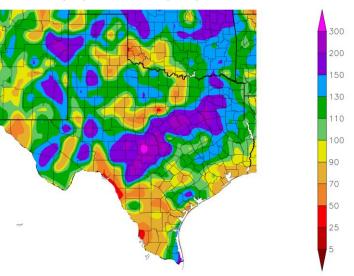
	Jun-Aug
1	2011
2	2023
3	2022
4	2024
5	2018
6	2020
7	2012
8	2019
9	2025
9	2016
11	2013
12	2015
13	2017
13	2014
15	2021

Generated 9/20/2025 using provisional data

ACIS Web Services

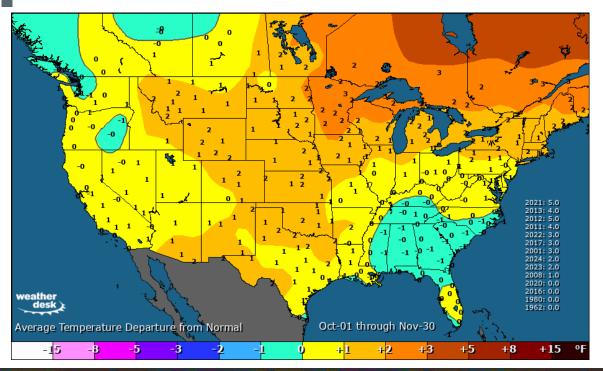

Updating Summer 2025

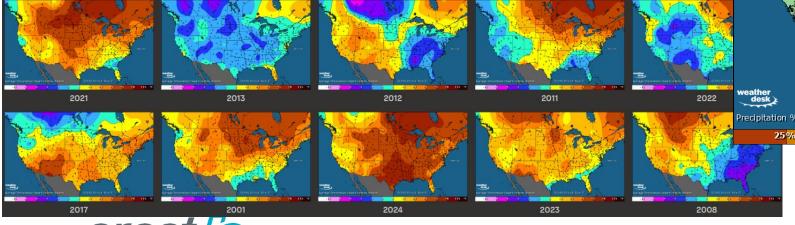

 June-August 2025 was the 22nd wettest on record for Texas. It was the wettest since 2021 and 4th wettest Jun-Aug period since 2011


Texas Precipitation

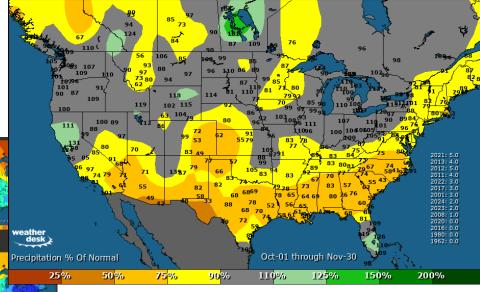
June-August

▼ Period	Precipitation	Rank e (out of 131)
June-August 2025	9.79"	110
June-August 2024	7.84"	76
June-August 2023	4.21"	7
June-August 2022	6.77"	46
June-August 2021	10.84"	122
June-August 2020	5.75"	24
June-August 2019	6.98"	54
June-August 2018	6.81"	48 [*]
June-August 2017	12.57"	130
June-August 2016	10.01"	113
June-August 2015	7.00"	55
June-August 2014	7.32"	64
June-August 2013	6.84"	50*
June-August 2012	6.40"	36
June-August 2011	2.46"	1


Generated 9/20/2025 using provisional data.

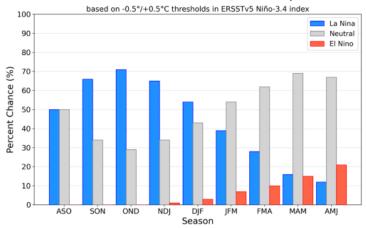

ACIC Wab Carrie

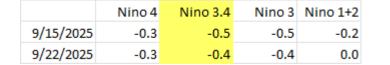
- Among the 30 wettest Jun-Aug periods for Texas (1895-current). 2025 and 2016 were by far the hottest, tied as the 33rd hottest out of 131 years. The average temperature rank of the 30 wettest Jun-Aug periods is 96th hottest.
- Last year, June through August was the hottest recorded for Texas in a summer with above normal precipitation (not as wet as 2025 but still above normal)
- Historically, a wet summer has equated to a mild (below normal) summer. The past two summers have bucked this trend



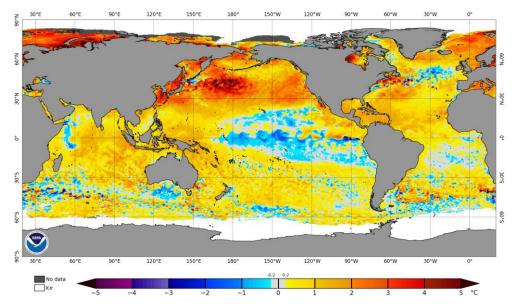
Quick Look at Fall Weather

- The forecast for this fall (Oct-Nov) is above normal temperatures and below normal precipitation
- 7 of 10 analogs support above normal temperatures (including the top two, 2021 and 2012)
- Last fall was the warmest on record for Texas. Oct-Nov 2025 will be hard-pressed to top last year but top 20 warmest is certainly possible


- The late-summer trend drier is likely to continue through the fall season
- Drought expected to increase

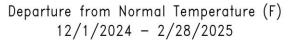

PUBLIC 58

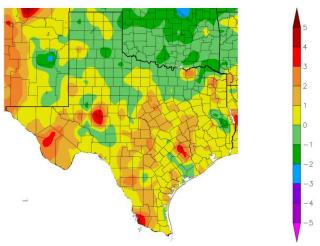
La Niña



Official NOAA CPC ENSO Probabilities (issued September 2025)

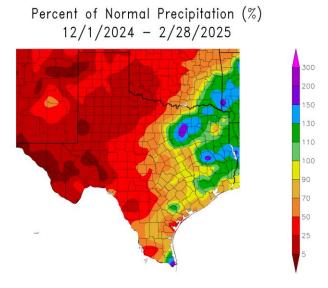
NOAA Coral Reef Watch Daily 5km SST Anomalies (v3.1) 22 Sep 2025




- Likely to see a La Niña in place for the upcoming winter (probably starting in the fall season)
- Could be a bit stronger signal than last winter
- This would mark 5 of the past 6 winters under the influence of La Niña

2020	0.5	0.6	0.5	0.3	0.0	-0.2	-0.4	-0.6	-0.9	-1.2	-1.3	-1.2
2021	-1.1	-0.9	-0.8	-0.7	-0.5	-0.4	-0.4	-0.5	-0.7	-0.8	-1.0	-1.0
2022	-1.0	-0.9	-1.0	-1.1	-1.0	-0.9	-0.8	-0.9	-1.0	-1.0	-0.9	-0.8
2023	-0.7	-0.4	-0.1	0.1	0.5	0.8	1.1	1.3	1.5	1.8	1.9	2.0
2024	1.8	1.5	1.1	0.7	0.4	0.2	0.1	-0.1	-0.2	-0.2	-0.4	-0.5
2025	-0.6	-0.4	-0.2	-0.1	-0.1	-0.1	-0.2	(-0.3)				
	DJF	JFM	FMA	MAM	AMJ	MJJ	JJA	JAS	ASO	SON	OND	NDJ

Reviewing Last Winter


Generated 3/20/2025 at HPRCC using provisional data.

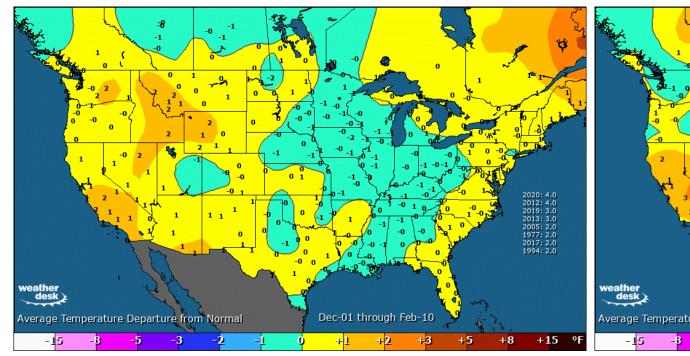
NOAA Regional Climate Centers

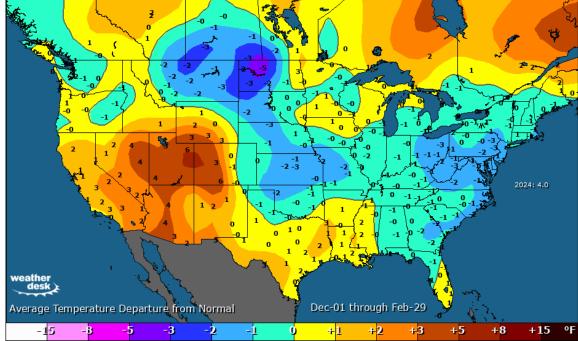
Temperature anomaly

ERCOT winter (Dec 1 – Feb 28)

- Last winter was the 28th warmest on record (130 historical winters)
- ERCOT's new winter peak record was set on 2/20/25. DFW fell to 12°, Houston was 27°, Austin was 18°, while San Antonio recorded a low of 21°. The LRGV saw lows in the mid-30s, while Lubbock dropped to 10°. This was not as cold as the prior winter's peak
- Southeast Texas had an extreme snow event on Jan 20-21, 2025
- Last winter was the 48th driest on record (130 historical winters). This was much drier than the prior winter, which was the 104th driest (wettest winter in over a decade)

Generated 3/20/2025 at HPRCC using provisional data.


NOAA Regional Climate Centers

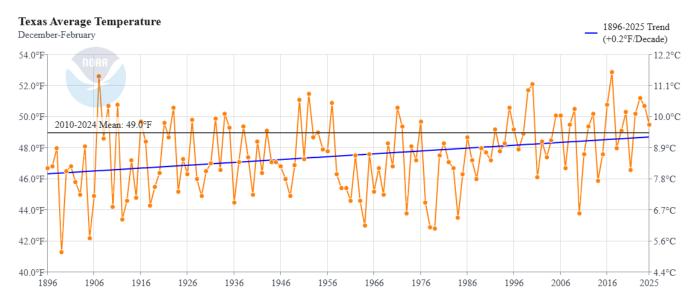

Precipitation anomaly

Verification of Last Year's Preliminary Winter Temperature Outlook

Analog weighted consensus: 2020-21, 2012-13, 2019-20, 2013-14, 2005-06, 1977-78, 2017-18, 1994-95

Preliminary Forecast

Actual Anomalies

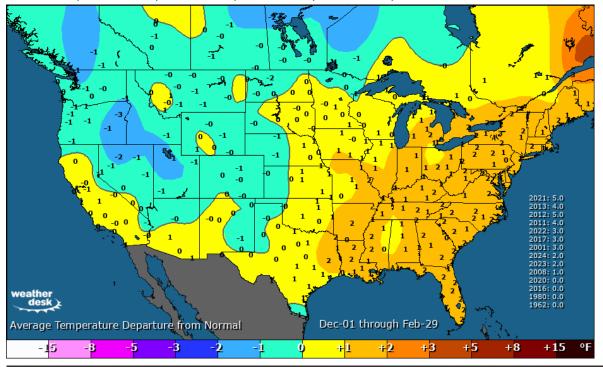

Mean Temperature Ranking of Recent Texas Winters (130 historical winters)

Austin coldest:			
18° on 2/20	2024-25	102 nd coldest (28 th warmes	t)
16° on 1/15, 1/17	2023-24	119 th	
15° on 12/23	2022-23	125 th	Since 2001, only 3
<mark>21° on 2/4</mark>	2021-22	111 th	winters have ranked
7° on 2/16	2020-21	42 nd (Uri)	in the coldest third (1-43)
30° on 12/19	2019-20	114 th	of historical winters (2020-21, 2013-14, and
32° on 12/11 and 1/4	2018-19	94 th	2009-10)
18° on 1/17	2017-18	76 th	
19° on 1/7	2016-17	130th coldest (warmest winter	on record)
31° on 1/23	2015-16	121 st	Since 1998, 4 of 5
23° on 1/8	2014-15	68 th	second-year La Niña
<mark>22° on 1/6, 1/7</mark>	2013-14	30 th	events have been warmer
<mark>27° on 12/26</mark>	2012-13	111 th	than the first year
<mark>27° on 12/7</mark>	2011-12	99 th	

Seasonal Rankings – what is normal?

- ☐ "Normal" may not be the best way to express seasonal temperatures
- □ As Texas keeps having many more above normal temperature seasons, it keeps raising the bar for what is "normal"
- □ We commonly use a 15-year normal (2010-2024). Applying that normal to all historical winters (1895-2025) results in only 37 of 130 winters coming in above normal
- This is why I'll oftentimes give all-time rankings and comparisons with recent years (in addition to or instead of "normal")

Count of above normal winters:


1895-1971 (77 years): 16

1998-2025 (28 years): 16

Preliminary Winter 2025-26 Temperature Outlook

Analog weighted consensus: 2021-22, 2012-13, 2013-14, 2011-12, 2022-23, 2017-18, 2001-02, 2024-25, 2023-24, 2008-09

Coldest temps for DFW

2020-21: 19°

2012-13: 22°

2013-14: 15°

2011-12: 22°

2022-23: 11°

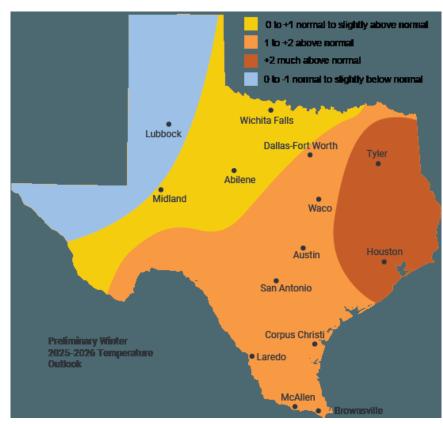
2017-18: 13°

2001-02: 14°

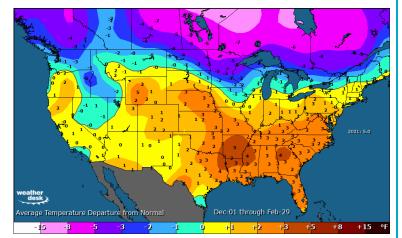
2024-25: 12°

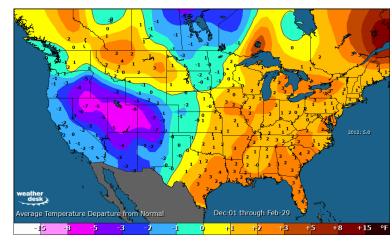
2023-24: 11°

2008-09: 20°


Historically similar years (analogs) suggest this winter may not have an extreme to the level of the past 3 winters – but it's high risk to rely upon a long-range forecast to pick up on a single event

The all-time historical average coldest day is 14° **Bold** years are the top 4 analogs


10000	2021	2013	2012	2011	2022
Acres 1					
	2017	2001	2024	2023	2008


٧	Veather Zone	95 th Percentile Minimum Temperature	99 th Percentile Minimum Temperature	February 2021 Minimum Temperature Percentile Rank
Ν	lorth	-4°	-12°	95 th
Ν	lorth Central	1°	-7°	98 th
٧	Vest	-4°	-9°	95 th
F	ar West	-1°	-11°	96 th
Ε	ast	1°	-6°	99th
С	oast	11°	5°	93rd
S	outh Central	7°	-2°	95 th
S	outhern	17°	11°	95 th
٧	'alley	21°	13°	94 th
Р	anhandle	-11°	-16°	95 th
		Table 1: Historical Min	imum Temperature Data	

Preliminary Winter 2025-26 Temperature Outlook

Official Preliminary Forecast

Top two analogs

The winter is forecasted to see above normal temperatures across most of Texas

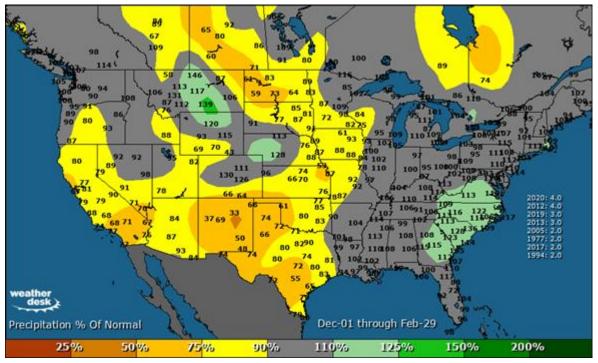
This is an average across three months and doesn't dismiss the potential for a period of extreme cold

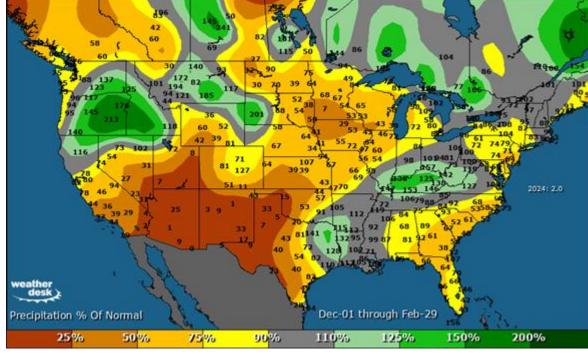
Good chance the polar vortex results in Arctic air impacting the U.S. at some point(s) this winter. Early indicators point toward the western half of the U.S. being more prone to cold air this winter. TBD if or how much this impacts Texas

Overall, less support for extreme cold impacting ERCOT than last winter – but not no support

If the winter is minus a significant cold event, good chance this winter is warmer than last

Precipitation Ranking of Recent Texas Winters (130 historical winters)

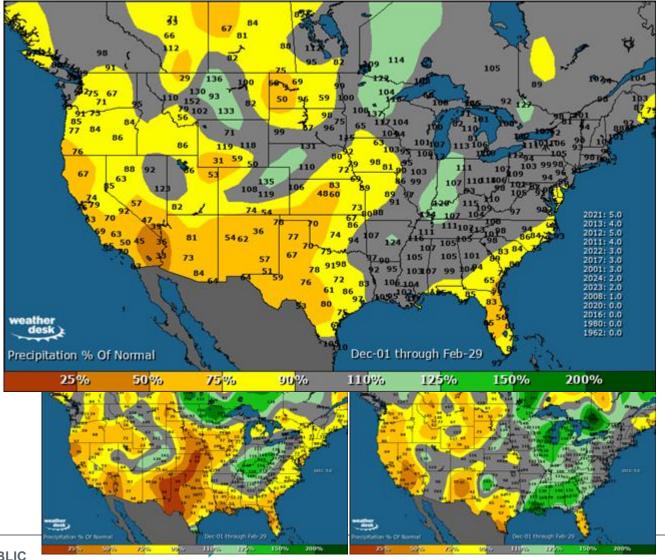

2024-25	48 th driest (L)			
2023-24	105 th (E)			
2022-23	45 th (L)	Cin an 2010) 4 l o Ni; = o	
2021-22	10 th (L)	winters and	, 4 La Niña 3 El Niño.	
2020-21	59 th (L)		iña winters	
2019-20	67 th (E)	were the 4	driest	
2018-19	92 nd (E)			
2017-18	76 th (L)			
2016-17	99th (L)			
2015-16	60 th (E)	Since 1998	1 of 5	
2014-15	75 th (E)	second-yea		
2013-14	12 th (N)	events have	e been drier	
2012-13	64 th (N)	than the fire	st year	
2011-12	121 st (L)			



(E) = El Niño, (L) = La Niña, (N) = neutral

Verification of Last Year's Preliminary Winter Precipitation Outlook

Analog weighted consensus: 2020-21, 2012-13, 2019-20, 2013-14, 2005-06, 1977-78, 2017-18, 1994-95


Preliminary Forecast

Actual Anomalies

Preliminary Winter 2025-26 Precipitation Outlook

Analog weighted consensus: 2021-22, 2012-13, 2013-14, 2011-12, 2022-23, 2017-18, 2001-02, 2024-25, 2023-24, 2008-09

Snowfall for Dallas-Fort Worth

2021-22: 1.7"

2012-13: 0.8"

2013-14: 2.9"

2011-12: 0.3"

2022-23: 1.3"

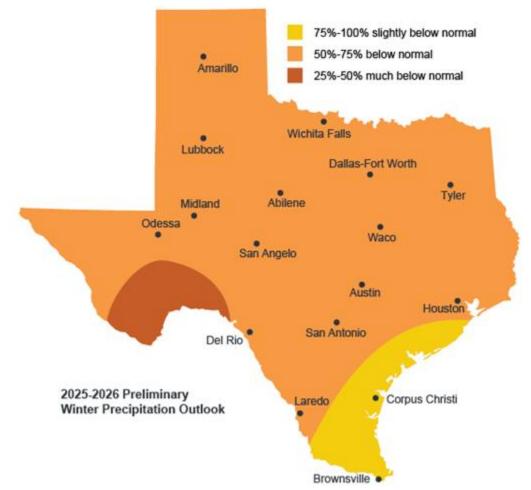
2017-18: trace

2001-02: 3.8"

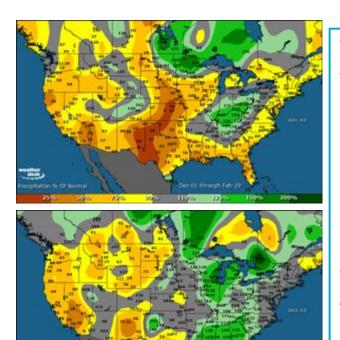
2024-25: 2.6"

2023-24: 1.5"

2008-09: 0.2"


(17.6" is the winter record)

The analogs point even more heavily toward a dry winter than a warm winter

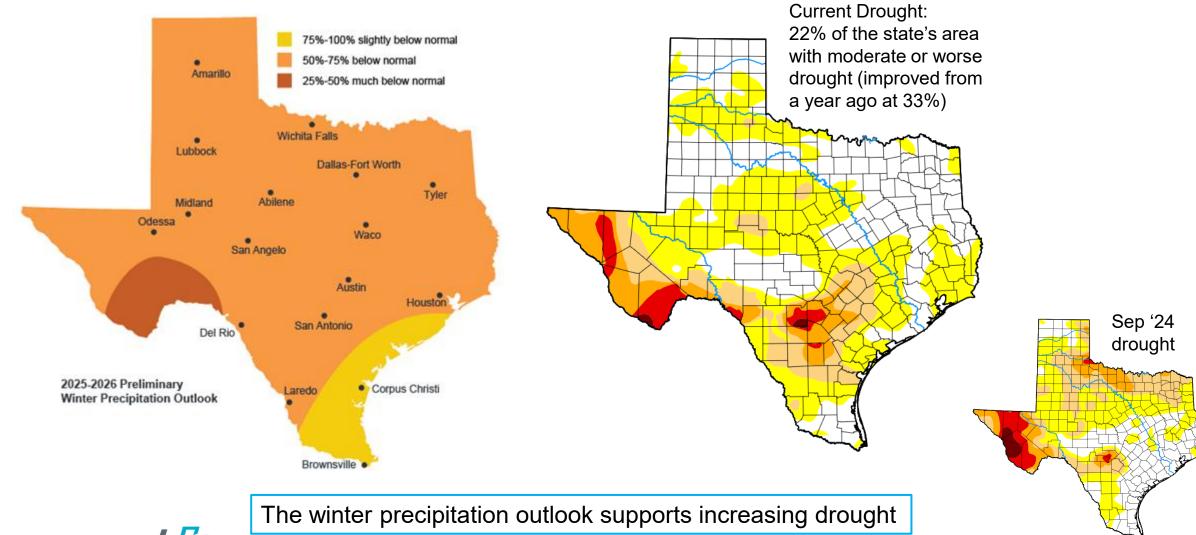

Good chance for DFW to see some measurable snowfall this coming winter (1-2" is a reasonable very early estimate)

PUBLIC 68

Preliminary Winter 2025-26 Precipitation Outlook

Official Preliminary Forecast

Top two analogs


The 2025-26 winter is forecasted to see below normal precipitation across almost all of Texas

La Niña (especially second-year events) show strong support for a dry winter

This winter is likely to be drier than last winter (which was also drier than normal)

Winter 2025-26 Precipitation Outlook vs Drought

Preliminary 2025-26 Winter Weather Outlook Summary

- The preliminary winter forecast suggests a mostly mild and dry winter in Texas (above normal temperatures, below normal precipitation)
- 4 of the past 5 second-year La Nina events were warmer and drier than the first year
- While this winter's forecast does not currently show as much potential for an extreme event as last winter (and most recent winters), it would be premature to write off an extreme event. Long-range forecasts are not designed to pick up on single events
- There is support for the polar vortex to have some impact on North America this winter. Preliminarily, the western half of the continent shows higher potential for Arctic outbreaks
- 2013-14 winter is a secondary analog worth monitoring, as the polar vortex had high impacts on Texas (frequent strong cold fronts, though not extreme)
- Fairly high confidence in a relatively dry winter (and drier than last winter)
- Signs point toward increasing drought this fall and winter

- There is not a strong correlation between the winter temperature anomaly and period(s) of extreme cold
- Every winter should be accompanied by a mindset for a period of extreme cold

The final winter forecast will be published in November

Wrap-Up

Thank you for coming!

You will receive a short survey via e-mail. Please complete it to help Texas RE develop future outreach.

